Topic Index
Meta
The following is a list of topics and skills covered during the semester. This will grow as we progress through the coursework. Italicized items are only covered in the readings. If you have additions or suggestions, please let Chris know!
A-D
- Analysis development (Course Preview, Lecture-01, Lecture-02, Lecture-03)
- Anscombe’s quartet (Lecture-03)
- Assignment (Lecture-01)
- Assignment operator,
<-
- Assignment operator,
base
- Calculate mean,
mean()
(Lecture-03) - Create binary conditions,
ifelse()
(Lecture-02) - Frequency table,
table()
(Lecture-03) - Get names of object,
names()
(Lecture-01) - Load packages,
library()
(Lecture-01) - Maxmium value of vector,
max()
(Lecture-03) - Minimum value of vector,
min()
(Lecture-03) - Range values of vector,
range()
(Lecture-03) - Sort or order a vector,
sort()
(Lecture-01) - Summarize data frame or vector,
summary()
(Lecture-03) - View working directory path,
getwd()
(Lecture-01)
- Calculate mean,
cowsay
(Lecture-01)- Creating ASCII character,
say()
- Creating ASCII character,
- Data
- tidy data concepts (Lecture-01)
- Data cleaning
- ordering (Lecture-02)
- subsetting (Lecture-02)
- variable creation and modification (Lecture-02)
- see also
dplyr
datasets
- Anscombe quartet data,
datasets
(Lecture-03) - Old Faithful geyser data,
faithful
(Lecture-01)
- Anscombe quartet data,
- Degrees of freedom (Lecture-03)
- Descriptive statistics (Lecture-03)
dplyr
- Create new variables,
mutate()
(Lecture-02)- see also
base::ifelse()
- see also
- Modify contents of existing variables,
mutate()
(Lecture-02) - Rename variables,
rename()
(Lecture-02) - Reorder variables,
arrange()
anddesc()
(Lecture-02) - Subset by columns,
select()
(Lecture-02) - Subset by observations,
filter()
(Lecture-02) - see also Operators
- Create new variables,
E-H
- Exploratory data analysis (Lecture-03)
- Getting help
- With
R
, including?
and??
(Lecture-01) - see also
reprex
and Reproducible examples
- With
ggplot2
- Basic use
- Create
ggplot
object,ggplot()
(Lecture-02) - Change to horizontal,
coord_flip()
(Lecture-02) - Color and asthetic mappings,
color
andfill
(Lecture-02) - Position adjustments,
dodge
andjitter
(Lecture-02)
- Create
- Geoms
- Area plot,
geom_area()
(Lecture-02) - Bar plot,
geom_bar()
(Lecture-02) - Box plot,
geom_box()
(Lecture-02) - Density plot,
geom_density()
(Lecture-03) - Line plot,
geom_freqpoly()
(Lecture-02) - Scatter plot,
geom_point()
(Lecture-02) - Smoothed line plot,
geom_smooth()
(Lecture-02)
- Area plot,
- Basic use
- GitHub
- Basic use (Course Preview, Lecture-01)
I-L
janitor
- Frequency table,
tabyl()
(Lecture-03)
- Frequency table,
knitr
- With notebooks (Lecture-02)
- Levels of measurement (Course Preview)
M-P
- Magritter
- see Operators, Pipe operator
- Model fit
- Conceptual definition (Lecture-03)
- Outliers and the mean (Lecture-03)
- Notebooks (Lecture-02)
- Operators
- Arithmatic operators,
+
,-
,*
,/
, and^
(Lecture-02) - Logical operators,
&
and|
(Lecture-02) - Pipe operator,
%>%
(Lecture-02) - Relational operators,
<
,>
,<=
,>=
,==
, and!=
(Lecture-02)
- Arithmatic operators,
- Package installation (Lecture-01)
- From CRAN, see
utils
package entry - From GitHub, see
remotes
package entry
- From CRAN, see
- Plotting and visualization
- Basic elements of design (Lecture-02)
- see also
ggplot2
Q-T
R
- Basic use (Course Preview, Lecture-01)
- Data cleaning (Lecture-02)
remotes
(Lecture-01)- Install packages from GitHub,
install_github()
- Install packages from GitHub,
reprex
- Produce reproducible example,
reprex()
(Lecture-03)
- Produce reproducible example,
- Reproducible Examples (Lecture-03)
- Reproducibility (Course Preview, Lecture-03)
rmarkdown
(Course Preview, Lecture-02)skimr
- Produce descriptive statistics table,
skim()
(Lecture-03)
- Produce descriptive statistics table,
stats
- Calculate median,
median()
(Lecture-03) - Calculate standard deviation,
sd()
(Lecture-03) - Calculate variance,
var()
(Lecture-03) - Calculate inter-quartile range,
IQR()
(Lecture-03)
- Calculate median,
- Summation notation (Lecture-03)
testDriveR
- Automobile data for 2017,
auto17
(Lecture-01, Lecture-02)
- Automobile data for 2017,
U-Z
utils
(Lecture-01)- Install packages from CRAN,
install.packages()
(Lecture-01) - Print
- first six observations,
head()
(Lecture-02) - last six observations,
tail()
(Lecture-02)
- first six observations,
- Structure of an object,
str()
(Lecture-01) - Spreadsheet-like data view,
View()
(Lecture-01) - Update packages from CRAN,
update.packages()
(Lecture-01)
- Install packages from CRAN,
- Version control (Course Preview)
- Workflow (Course Preview)